NEWWOOD SOLUTIONS Ltd

Derby Office: 15 Kings Croft, Allestree, Derby, DE22 2FP. Tel +44 (0)1332 721326

Reading Office: 13 Highfield Road, Tilehurst, Reading RG31 6YR. Tel +44 (0) 118 9012298

Email: sales@newwoodsolutions.co.uk

Web: www.newwoodsolutions.co.uk \\

CB-6335 PCIe TWO SITE INDUSTRY PACK CARRIER

USERS MANUAL

PCB Issue 3 FPGA Version 6335V4.0 8MHz or 32MHZ IP Clock

Document Nos.: 6335/UTM/G/x/2.1 Date: 12/11/2019 Author: PJM/MRN

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
05/10/15	1.0	Use manual issue
09/10/14	2.0	Manual updated to show PCB at Issue 3 and latest FPGA version
12/11/19	2.1	Change from Hytec to Newwood Solutions for contact details

CRITICAL APPLICATIONS DISCLAIMER

THIS PRODUCT FROM NEWWOOD SOLUTIONS LTD USES COMPONENTS THAT ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS").

FURTHERMORE, SOME COMPONENTS USED IN THIS NEWWOOD SOLUTIONS LTD PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR.

THE CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF NEWWOOD SOLUTIONS LTD PRODUCT IN CRITICAL APPLICATIONS.

CONTENTS

1.	IN	FRODUCTION	1
	1.1	FPGA NOTES	1
2.	INI	DUSTRY PACK MEMORY AREA	5
3.	AP	PLICATION REGISTERS	5
	3.1	INTERRUPTS LOW. (OFFSET 8H) [READ ONLY]	5
	3.2	INTERRUPTS HIGH. (OFFSET AH) [READ ONLY]	5
	3.3	MASK LOW/HIGH (OFFSETS CH, EH)	5
	3.4	IP CLOCK SELECT. (OFFSET 10H)	5
4.	633	35 ID ROM	7
AF	PEN	DIX A	3
AF	PEN	DIX B	9
AF	PEN	DIX C 10)
AF	PEN	DIX D1	l

1. INTRODUCTION

The 6335 is an Industry Pack Carrier card for the PCI Express bus. This card is used in a 'X1' PCI Express slot and can accommodate two single-width Industry Packs, which can be clocked at either 8MHz or 32MHz (individually selected). The PCI Express bus is converted to a 'local bus' by a bridge chip and then this local bus is interfaced to the Industry Pack (IP) Logic connectors by an FPGA. The IP interface supports Memory, I/O, ID and Interrupt access to the Industry Packs in the same way as is used in the 9010 IOC from Newwood Solutions. IP interrupts are mapped to the PCI Express bus. Driver support is available for both Windows and LINUX environments.

The PCIe interrupt can be enabled by writing to an on board register.

The interrupts INT0 and INT1 of both Industry Packs can be enabled on an individual basis.

PCB mounted LEDs flash to visually confirm completed IP access cycles to individual slots.

The card receives +12-volt and +3.3-volt power from the PCIe bus. From these, it produces +5 volts and -12 volts for the Industry Packs. Also, space is available for an optional DC-DC converter producing isolated +/- 12-volt supplies which can be used to power the 'front-end' of analogue Industry Packs such as the 8401 and 8402. These are selected by jumpers.

I/O connections are via a single 100-way right-angle connector with accepts a ribbon cable terminated in two 50-way SCSI-2 connectors. These I/O connections are compatible with Newwood Solutions range of DIN-rail mounted I/O termination and breakout assemblies. A cable adapter card 8924 can be used to allow connection to Hytec terminal blocks such as the 8901. This keeps the pinning the same on the terminal block.

A single-pole LEMO size 00250 socket is also fitted on the card bracket to allow an external TTL signal to be brought into the card. This can be used, via jumpers, to send a trigger or inhibit signal to each Industry Pack.

1.1 FPGA NOTES

This design uses the PEX 8311 Multi-purpose and Feature-Rich PCI Express Bridge

The design uses Local Bus Interface C Mode Signals (Non-Multiplexed) Mode pins MODE[1:0] (H20 & H19) are tied low on PCB.

The ROOT_COMPLEX# signal is pulled high (de-asserted) on the PCB. Thus the PEX 8311 acts as a PCI Express Endpoint device

The Carrier card Registers are accessed via the PCIe I/O area and are set out the same as the Hytec 9010 IOC.

The IP cards are accessed via the PCIe memory area which is remapped in the PLX IC at 0x01000000. The only way of differentiating from I/O and memory space is via the address which is remapped to show I/O or memory.

2. INDUSTRY PACK MEMORY AREA

This area is 16 Mbytes wide, organised as 16-bit words. All accesses to Industry Pack resources are through this area, organised as follows:

Offset Contents

000000h-01FFFEh Memory area of Industry Pack A, 2Mbytes. 020000h-03FFFEh Memory area of Industry Pack B, 2Mbytes. 040000h-0BFFFEh Not used. 0C00000h-0DFFFEh Not used (spare). 0E00000h-0E00FFEh Access to Industry Packs A-F I/O, ID and INT areas.

This last area is sub-divided as follows:

Offset	Contents
000h-07Eh	Industry Pack A I/O registers (64 bytes).
080h-0FEh	Industry Pack A ID registers (64 bytes).
100h-17Eh	Industry Pack B I/O registers (64 bytes).
180h-1FEh	Industry Pack B ID registers (64 bytes).
200h-5FEh	Not used
600h-7FEh	Not used
800h-8FEh	Industry Pack A INT registers (128 bytes, only 2 words used).
900h-9FEh	Industry Pack B INT registers (128 bytes, only 2 words used).
A00h- DFEh	Not used.
E00h-FFEh	Not used.

Note: for this last set of registers, an access at the base address requests the vector for IP Interrupt 0, and at base address plus two, the vector for Interrupt 1. All other addresses are not used.

3. Application Registers

The Carrier card Registers are accessed via the PCIe I/O area and are set out the same as the Hytec 9010 IOC.

Offset	Name	Description
0-6		Not used
8	INTS_LO	Read only access to the IP IRQ Status Register (4 bits)
A	INTS_HI	Read only access to the IP Error Status Register (3 bits)
С	MASK_LO	Read/write access to a mask register for IP IRQ sources
E	MASK_HI	Read/write access to a mask register for IP Error sources
10	IP_CLK	Read/write access the IP CLOCK SELECT register (2 bits)
12-1C		Not used.

3.1 INTERRUPTS LOW. (Offset 8h) [Read only]

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	INT	INT	INT	INT
												REQ	REQ	REQ	REQ
												B1	B0	A1	A0

Bits showing the states of two IP Interrupt output lines for all 2 industry packs.

3.2 INTERRUPTS HIGH. (Offset Ah) [Read only]

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
Х	Х	Х	Х	Х	Х	Х	TIMO	Х	Х	Х	Х	Х	Х	ERR_	ERR_
														В	Α

Bits showing the state of IP Error outputs for all 2 industry packs plus one bit for the IP access timeout flag to allow an interrupt to be generated from it.

3.3 MASK LOW/HIGH (Offsets Ch, Eh)

Registers corresponding to Interrupt and Error flag bits in INTS LO & INTS HI above, to select which, if any, are permitted to produce a PC104+ processor interrupt. This interrupt is presented to the PC104+ card on PCI interrupt INTA#.

3.4 IP CLOCK SELECT. (Offset 10h)

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	CKS_	CKS_
														В	Α

Bits to select the clock frequency for each Industry Pack. '1' = 32MHz, '0' = 8MHz. These bits all default to '0' on power-up.

4. 6335 ID ROM

The ID configuration information held in the PROM is as detailed below. The byte addresses of the ID PROM are as below:-

Base+80	ASCII 'VI'	5649h	(This shows PCB Issue 3 and Yiliny at issue 1)
Base+82	ASCII 'TA'	5441h	
Base+84	ASCII '4 '	3420h	
Base+86	Muef ID high byte	0080h	
Base+88	Murf ID low word	0300h	
Base+8A	Model number	6335h	
Base+8A	Revision	0301b	
Base+8E	Reserved	0000h	
Base+90	Driver ID	0000h	
Base+92	Driver ID	0000h	
Base+94	Flags	0002h	
Base+96	No of bytes used	001Ah	
Base+98	Not used	0000h	

Linux API IOC9010 Blade/Hytec 5331/Hytec 6335/uTCA7002/7003 Linux API Functions including examples Download 320KB Linux Driver IOC9010 Blade/Hytec 5331/Hytec 6335 Linux device drivers (both PCI and UART)

APPENDIX A

PCB JUMPERS

Jumper	Function/default setting
J1	Select Xilinx mode: must be IN.
J2	Connect LEMO input to STROBE on Industry Pack A.
J3	Connect LEMO input to STROBE on Industry Pack B.
J4-6	Not present.
J7	Connect isolated +12 volts to Industry Pack A IO signal paths.
J8	Connect isolated +12 volts to Industry Pack B IO signal paths.
J9	Connect isolated -12 volts to Industry Pack A IO signal paths.
J10	Connect isolated -12 volts to Industry Pack B IO signal paths.
J11	Connect isolated AGND to Industry Pack A IO signal paths.
J12	Connect isolated AGND to Industry Pack B IO signal paths.

APPENDIX B

CON 1 Connector – PL1 (100 way) on Issue 2 6335 Board

I/O Connector – 50 way on transition

Card 8304 Where this feeds ONE IP sites

Pin	SCSI	Pin	SCSI	Simmel
8522	50way	8522	50way	Signai
1	1	2	26	IO1_P1
3	2	4	27	IO3_P2
5	3	6	28	IO5_P3
7	4	8	29	IO7_P4
9	5	10	30	IO9_P5
11	6	12	31	IO11_P6
13	7	14	32	IO13_P7
15	8	16	33	IO15_P8
17	9	18	34	IO17_P9
19	10	20	35	IO19_P10
21	11	22	36	IO21_P11
23	12	24	37	IO23_P12
25	13	26	38	IO25_P13
27	14	28	39	IO27_P14
29	15	30	40	IO29_P15
31	16	32	41	IO31_P16
33	17	34	42	Ext RST
35	18	36	43	TRIG/EBA OUT
37	19	38	44	Not Used
39	20	40	45	TRIG/EBA IN
41	21	42	46	GND
43	22	44	47	GND
45	23	46	48	GND
47	24	48	49	GND
49	25	50	50	GND

APPENDIX C

CON 1 Connector – PL1 (100 way) on Issue 3 6335 Board

I/O Connector – 50 way on transition

Card 8304 Where this feeds ONE IP sites

Pin Trans	Pin 8522	Signal	Pin Trans	Pin 8522	Signal
1	2	IO2_N1	26	1	IO1_P1
2	4	IO4_N2	27	3	IO3_P2
3	6	IO6_N3	28	5	IO5_P3
4	8	IO8_N4	29	7	IO7_P4
5	10	IO10_N5	30	9	IO9_P5
6	12	IO12_N6	31	11	IO11_P6
7	14	IO14_N7	32	13	IO13_P7
8	16	IO16_N8	33	15	IO15_P8
9	18	IO18_N9	34	17	IO17_P9
10	20	IO20_N10	35	19	IO19_P10
11	22	IO22_N11	36	21	IO21_P11
12	24	IO24_N12	37	23	IO23_P12
13	26	IO26_N13	38	25	IO25_P13
14	28	IO28_N14	39	27	IO27_P14
15	30	IO30_N15	40	29	IO29_P15
16	32	IO32_N16	41	31	IO31_P16
17	34	Not Used	42	33	Ext RST
18	36	Not Used	43	35	TRIG/EBA OUT
19	38	Not Used	44	37	Not Used
20	40	Not Used	45	39	TRIG/EBA IN
21	42	Not Used	46	41	GND
22	44	Not Used	47	43	GND
23	46	Not Used	48	45	GND
24	48	Not Used	49	47	GND
25	50	GND	50	49	GND

APPENDIX D

Cable Adapter Card 8924

A cable adapter card 8924 can be used to allow connection to Hytec terminal blocks such as the 8901. This keeps the pinning the same on the terminal block.