## NEWWOOD SOLUTIONS Ltd



**Derby Office**: 15 Kings Croft, Allestree, Derby, DE22 2FP. Tel +44 (0)1332 721326

**Reading Office**: 13 Highfield Road, Tilehurst, Reading RG31 6YR. Tel +44 (0) 118 9012298

Email: <a href="mailto:sales@newwoodsolutions.co.uk">sales@newwoodsolutions.co.uk</a>

Web: www.newwoodsolutions.co.uk

# ADC8417 8-CHANNEL 24-BIT ADC INDUSTRY PACK

## **USERS MANUAL**

PCB Issue 3 FPGA Version 8417V302 8MHz or 32MHZ IP Clock

Document Nos.: ADC8417/UTM/G/x/3.4 Date: 28/11/2017 Author: MRN



## **Revision History**

| Date     | Version | Revision                                                                                                                  |
|----------|---------|---------------------------------------------------------------------------------------------------------------------------|
| 08/12/10 | 0.1     | Preliminary                                                                                                               |
| 21/02/11 | 1.0     | Initial release.                                                                                                          |
| 06/05/11 | 2.0     | Change data storage format to same as DAC8415 (see CN310).                                                                |
| 06/07/11 | 2.3     | Endian bit in the CSR Ext so user can switch between Big and Little Endian for ADC data in memory and ADC data registers. |
| 20/10/11 | 3.0     | The unit has been redesigned as an 8 channel unit to reduce power consumption.                                            |
| 14/12/11 | 3.1     | Product specifications updated and memory data table corrected for 8 channels.                                            |
| 16/12/11 | 3.2     | Two extra registers added to allow full address counter to be read and the NOC register to be written in full.            |
| 19/04/12 | 3.3     | The manual highlights the preferred type of Transition card to use and the need to use proper grounding techniques.       |
| 28/11/17 | 3.4     | Change from Hytec to Newwood Solutions for contact details                                                                |

The following table shows the revision history for this document.

#### **CRITICAL APPLICATIONS DISCLAIMER**

THIS PRODUCT FROM NEWWOOD SOLUTIONS LTD USES COMPONENTS THAT ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS").

FURTHERMORE, SOME COMPONENTS USED IN THIS NEWWOOD SOLUTIONS LTD PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR.

THE CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF NEWWOOD SOLUTIONS LTD PRODUCT IN CRITICAL APPLICATIONS.

## CONTENTS

| 1.                                                                                             | INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                                                                                             | PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DDUCT SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.                                                                                             | OP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERATING MODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                | 3.1<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REGISTER MODE<br>TRIGGERED SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.                                                                                             | ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MORY MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.                                                                                             | API                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLICATION REGISTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>5.9<br>5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CONTROL & STATUS REGISTER (CSR)<br>CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9<br>9<br>10<br>10<br>10<br>10<br>11<br>11<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.                                                                                             | AD(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>13</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.                                                                                             | AD0<br>6.1<br>6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U OPEKATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>13</b><br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.                                                                                             | AD0<br>6.1<br>6.2<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U OPEKATION       1         Memory Update Inhibit and Interrupt.       1         Set Number of Conversions       1         Triggering.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>13</b><br>13<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.                                                                                             | AD<br>6.1<br>6.2<br>6.3<br>6.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U OPEKATION       1         MEMORY UPDATE INHIBIT AND INTERRUPT.       1         SET NUMBER OF CONVERSIONS       1         TRIGGERING.       1         I       Software Trigger         I       Software Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>13</b><br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br> |
| 6.                                                                                             | AD<br>6.1<br>6.2<br>6.3<br>6.3.<br>6.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Image: Correct of Conversions       1         Set Number of Conversions       1         Triggering       1         Software Trigger       1         Hardware Trigger       1         Memory Update Trigger       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>13</b> 13 13 13 13 13 13 13 13 13 13 13 13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.<br>7.                                                                                       | AD<br>6.1<br>6.2<br>6.3<br>6.3.<br>6.4<br>ID I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Image: Correct of the second state  | <b>13</b> 13 13 13 13 13 13 13 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ol> <li>6.</li> <li>7.</li> </ol>                                                             | AD0<br>6.1<br>6.2<br>6.3<br>6.3.<br>6.3.<br>6.4<br>ID I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Image: Correct of the state of the stat | <b>13</b> 13 13 13 13 13 13 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ol> <li>7.</li> <li>8.</li> </ol>                                                             | AD<br>6.1<br>6.2<br>6.3<br>6.3.<br>6.4<br>ID I<br>SEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Correct of the system       1         Memory Update Inhibit and Interrupt.       1         Set Number of Conversions       1         Triggering.       1         Image: Software Trigger       1         Image: Antheory Update       1         Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>14</li> <li>14</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>6.</li> <li>7.</li> <li>8.</li> </ol>                                                 | AD<br>6.1<br>6.2<br>6.3<br>6.3.<br>6.4<br>ID I<br>SEI<br>IMPOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MEMORY UPDATE INHIBIT AND INTERRUPT.       1         SET NUMBER OF CONVERSIONS       1         TRIGGERING.       1 <i>l</i> Software Trigger <i>l</i> Software Trigger <i>l</i> Memory Update <i>l</i> Software Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>14</li> <li>14</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> </ol>                                     | I. INTRODUCTION       4         2. PRODUCT SPECIFICATIONS       5         3. OPERATING MODES       6         3.1 REGISTER MODE       6         3.2 TRIGGERED SAMPLING.       6         4. MEMORY MAP.       7         5. APPLICATION REGISTERS.       9         5.1 CONTROL & STATUS REGISTER (CSR).       9         5.2 CONTROL       9         5.3 CONVERSION POINTER LSW       10         5.4 NUMBER OF CONVERSIONS LSW       10         5.5 ADC SAMPLE RATE.       10         5.6 INTERRUPT VECTOR       10         5.7 EXTENDED CONTROL & STATUS REGISTER (CSR EXT).       11         5.8 CONVERSION POINTER MSW.       12         5.10 ADC REGISTERS       12         5.10 ADC REGISTERS       12         5.10 ADC OPERATION.       13         6.1 MEMORY UPDATE INHIBIT AND INTERRUPT.       13         6.2 SET NUMBER OF CONVERSIONS       13         6.3.1 Software Trigger.       13         6.3.2 Hardware Trigger.       13         6.3.3 TRIGGERING.       13         6.4 MEMORY UPDATE INHIBIT AND INTERRUPT.       13         6.3.1 TRIGGERING.       13         6.3.2 Hardware Trigger.       13         6.3.4 MEMORY UPDATE INHI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ol> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>A.</li> </ol>                         | AD<br>6.1<br>6.2<br>6.3<br>6.3.<br>6.4<br>ID I<br>SEI<br>IMPOI<br>EPI<br>PPENI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MEMORY UPDATE INHIBIT AND INTERRUPT. 1   SET NUMBER OF CONVERSIONS 1   TRIGGERING. 1 <i>1</i> Software Trigger 1 <i>2</i> Hardware Trigger 1   MEMORY UPDATE 1   PROM 1   LECTION OF THE +/-12 VOLT POWER SUPPLY 1   RTANT NOTE 1   CS SOFTWARE DRIVER. 1   DIX A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>14</li> <li>14</li> <li>14</li> <li>14</li> <li>14</li> <li>15</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>A.</li> <li>A.</li> </ol>             | AD<br>6.1<br>6.2<br>6.3<br>6.3.<br>6.4<br>ID I<br>SEI<br>IMPO<br>EPI<br>PPENI<br>PPENI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEMORY UPDATE INHIBIT AND INTERRUPT. 1   SET NUMBER OF CONVERSIONS 1   TRIGGERING. 1 <i>I</i> Software Trigger <i>I</i> Software Trigger <i>I</i> MEMORY UPDATE   PROM 1   LECTION OF THE +/-12 VOLT POWER SUPPLY 1   RTANT NOTE 1   CS SOFTWARE DRIVER 1   DIX A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>14</li> <li>14</li> <li>14</li> <li>14</li> <li>14</li> <li>15</li> <li>16</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ol> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>A.</li> <li>A.</li> <li>A.</li> </ol> | AD<br>6.1<br>6.2<br>6.3<br>6.3.<br>6.4<br>ID I<br>SEI<br>IMPO<br>EPI<br>PPENI<br>PPENI<br>PPENI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MEMORY UPDATE INHIBIT AND INTERRUPT. 1   SET NUMBER OF CONVERSIONS 1   TRIGGERING. 1 <i>I</i> Software Trigger 1 <i>Q</i> Hardware Trigger 1   MEMORY UPDATE 1   PROM 1   LECTION OF THE +/-12 VOLT POWER SUPPLY 1   RTANT NOTE 1   CS SOFTWARE DRIVER 1   DIX A 1   DIX B 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ol> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>13</li> <li>14</li> <li>14</li> <li>14</li> <li>14</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



## 1. INTRODUCTION

The Newwood Solutions IP-SSA-8417 is an Industry Pack that provides 8 channels of simultaneously sampled analogue digitisation with the following characteristics:-

- 8 simultaneously sampled channels.
- 8401 register superset and connector pin layout.
- 24-bit ADCs used on-board
- Programmable 16bits/24 bits resolution
- Programmable bi-polar full-scale resolution all inputs +/-10V or +/-5V bi-polar.
- Conversion method: Delta-sigma
- On-board calibration by FPGA firmware using stored offset and gain parameters.
- 16bits accuracy +/-10V on board calibration.
- 16bits accuracy +/-5V on board calibration.
- True full differential inputs.
- Input impedance 10Mohms differential,
- CMRR 100dB at +/-5V wrt plant CMV
- DC +/-25V overload for 1ms.
- On board RAM Memory up to 1M x 16 bits (128K samples per channel in 16 bit mode and 64K samples per channel in 24 bit mode.
- Offset drift: 4uV/degC typical
- Gain drift 2ppm/degC typical
- Up to 100kSPS sampling rate from an external clock
- Internal update clock rates programmable (100KHz,50KHz,20KHz,10KHz,5KHz,2KHz,1KHz,500Hz,200Hz,100Hz,50Hz,20Hz,10Hz, 5Hz,2Hz and 1Hz)
- On-board sample clock: programmable to 100kHz
- ADC Noise 20uV rms
- Bandwidth 70kHz@100kSPS
- System to plant isolation to 100V when externally powered by DC/DC converter option.
- Ext sample clock up to 100kHz isolated input
- Ext trigger isolated input
- Two buffered reference voltage outputs for excitation.
- 8/32MHz IP system clock operation.
- Field upgradeable firmware via IP bus or JTAG port.
- EPICS and ASYN driver support.

#### **IMPORTANT NOTE**

Please select the correct transition card or ensure that the input signals to the 8417 are correct grounded between the 8417 and source. This is to ensure that the inputs of the 8417 and the source are tied together and are not allowed to float.

## 2. PRODUCT SPECIFICATIONS

| Size:<br>Operating temp:<br>Number of channels:<br>ADC resolution: | Single width Industry Pack 1.8ins x 3.9 ins<br>0 to 45 deg C ambient<br>8<br>24 bits                                                                                                                                                                                                  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diff. Non-linearity:<br>Int. Non-linearity:                        | +/-0.75 LSB TYP<br>+/-1.5 LSB TYP                                                                                                                                                                                                                                                     |
| Offset error:                                                      | +/-10V offset error - +/-610uV with firmware calibration @ 25 deg C $(1/2)$                                                                                                                                                                                                           |
| Offset drift:<br>Gain error:                                       | <ul> <li>+/-2/11V typical without calibration).</li> <li>+/-5V offset error - +/-305uV after firmware calibration @ 25 deg C (+/- 2mV typical without calibration).</li> <li>10uV/degC typical</li> <li>+/-10V gain error - +/-610uV after firmware calibration @ 25 deg C</li> </ul> |
| Gain drift:                                                        | <ul> <li>(+/- 0.2% FS typical without calibration).</li> <li>+/-5V gain error - +/-305uV after firmware calibration @ 25 deg C</li> <li>(+/- 0.2% FS typical without calibration).</li> <li>5ppm/degC typical</li> </ul>                                                              |
| Range:<br>Overvoltage:<br>Bandwidth (-3dB):<br>Throughput:         | +/-10V or +/-5V full scale (+ve input referred to -ve input)<br>+/-25Vpeak for 1ms and 20VDC<br>170KHz<br>100KHz                                                                                                                                                                      |
| ADC device:<br>Data format:<br>SNR:                                | TI ADS1274<br>24 bits straight binary<br>ADC Signal-to-Noise 110dB (typ)                                                                                                                                                                                                              |
| Isolation:                                                         | System to plant isolation to 100V when externally powered by DC/DC                                                                                                                                                                                                                    |
| Memory:<br>Power:                                                  | 1M x 16 bits .<br>+5V @ 50mA typical<br>+12V @ 315mA typical when switched to internal<br>-12V @ 110mA typical when switched to internal                                                                                                                                              |

The 8417 Module Response Time

At the point where the module is writing ADC data to memory during sampling and an IP memory read/write occurs the number of wait states introduced will vary. In this case the module is guaranteed to respond with Ack\* within 3.5us.

## 3. Operating Modes

#### 3.1 Register mode

This mode is enabled by setting ARM = '0' (bit 15 of the CSR) and ET='0' (bit 14 of the CSR). As soon as the ARM bit is set (no trigger required) the ADCs sample at the sample rate which is derived either from the internal clock whose rate is set by the Internal Sample Rate register or by the external sample clock supplied by the user via the rear transition card see .

The ADC data registers are updated at the conversion rate. These registers can be read in any order at any time.

The memory is also updated at the sample rate and is continuously updated rapping round on reaching the end of the memory until the ARM bit is cleared.

There are sixteen ADC buffer registers (addresses 10hex - 28hex) which store the last sampled conversions and may be read at any time.

### 3.2 Triggered sampling

This mode is enabled by setting ARM = '0' (bit 15 of the CSR) and ET='1' (bit 14 of the CSR). Then when a software or hardware trigger is detected conversions are stored in the RAM memory at the sample rate set.

The sample rate is derived either from the internal clock whose rate is set by the Internal Clock Rate register or by the external clock supplied by the user.

The value written to the memory pointer register gives the starting point in memory that the conversions are stored to.

The point at which conversions are stopped is set by the Number of Counts register.

The address the unit stops at is given by the Memory Conversion pointer register.

This mode also updates the ADC Data registers at the conversion rate. These registers can be read in any order at any time.

#### 4. Memory Map

A bit in the control register of the 8417 allows selection of either 1Mb memory (16K samples/channel 24 bit) when set at logic 1 or 2Mb (32K samples/channel 24 bit) when set at logic 0.

#### 24 Bit Mode

When set to 24 bit mode with 2Mb memory size the memory is split up in to two halves giving an upper and lower conversion memory.

These areas are further divided into sixteen segments allocated to conversions from ADC1 to ADC16 as shown in the table below.

When the lower buffer has been filled the Half Full Flag status is set and when the upper memory is full the Full Flag status is set.

|                                    | (Endian off in Cort Ext= 0)        |
|------------------------------------|------------------------------------|
| Lower Conversion Memory ADC        | Upper Conversion Memory ADC        |
| ADC8 conversions                   | ADC8 conversions                   |
| ADC7 conversions                   | ADC7 conversions                   |
| ADC6 conversions                   | ADC6 conversions                   |
|                                    |                                    |
|                                    |                                    |
| ADC3 conversions                   | ADC3 conversions                   |
| ADC2 conversions                   | ADC2 conversions                   |
| ADC1 conversion 32k (bits 23-16)   | ADC1 conversion 64k (bits 23-16)   |
| ADC1 conversion 32k (bits 15-0)    | ADC1 conversion 64k (bits 15-0)    |
| ADC1 conversion 32k-1 (bits 23-16) | ADC1 conversion 64k-1 (bits 23-16) |
| ADC1 conversion 32k-1 (bits 15-0)  | ADC1 conversion 64k-1 (bits 15-0)  |
|                                    |                                    |
| ADC1 conversion 1 (bits 23-16)     | ADC1 conversion 32k+1 (bits 23-16) |
| ADC1 conversion 1 (bits 15-0)      | ADC1 conversion 32k+1 (bits 15-0)  |

| 24 bit Data in memory Little endian | (Endian bit in CSR Ext='0') |
|-------------------------------------|-----------------------------|
|-------------------------------------|-----------------------------|

| 24 bit Data in memory Big endian | (Endian bit in CSR Ext='1') |
|----------------------------------|-----------------------------|
|----------------------------------|-----------------------------|

| Lower Conversion Memory ADC        | Upper Conversion Memory ADC        |
|------------------------------------|------------------------------------|
| ADC8 conversions                   | ADC8 conversions                   |
| ADC7 conversions                   | ADC7 conversions                   |
| ADC6 conversions                   | ADC6 conversions                   |
|                                    |                                    |
|                                    |                                    |
| ADC3 conversions                   | ADC3 conversions                   |
| ADC2 conversions                   | ADC2 conversions                   |
| ADC1 conversion 32k (bits 15-0)    | ADC1 conversion 64k (bits 15-0)    |
| ADC1 conversion 32k (bits 23-16)   | ADC1 conversion 64k (bits 23-16)   |
| ADC1 conversion 32k-1 (bits 15-0)  | ADC1 conversion 64k-1 (bits 15-0)  |
| ADC1 conversion 32k-1 (bits 23-16) | ADC1 conversion 64k-1 (bits 23-16) |
|                                    |                                    |
| ADC1 conversion 1 (bits 15-0)      | ADC1 conversion 32k+1 (bits 15-0)  |
| ADC1 conversion 1 (bits 23-16)     | ADC1 conversion 32k+1 (bits 23-16) |



#### 16 Bit Mode

When set to 16 bit mode with 2Mb memory size the memory is split up in to two halves giving an upper and lower conversion memory.

These areas are further divided into eight segments allocated to conversions from ADC1 to ADC8 as shown in the table below.

When the lower buffer has been filled the Half Full Flag status is set and when the upper memory is full the Full Flag status is set.

| Lower Conversion Memory           | Upper Conversion Memory            |
|-----------------------------------|------------------------------------|
| ADC8 conversions                  | ADC8 conversions                   |
| ADC7 conversions                  | ADC7 conversions                   |
| ADC6 conversions                  | ADC6 conversions                   |
|                                   |                                    |
|                                   |                                    |
| ADC3 conversions                  | ADC3 conversions                   |
| ADC2 conversions                  | ADC2 conversions                   |
| ADC1 conversion 64k (bits 15-0)   | ADC1 conversion 128k (bits 15-0)   |
| ADC1 conversion 64k-1 (bits 15-0) | ADC1 conversion 128k-1 (bits 15-0) |
|                                   |                                    |
| ADC1 conversion 2 (bits 15-0)     | ADC1 conversion 64k+2 (bits 15-0)  |
| ADC1 conversion 1 (bits 15-0)     | ADC1 conversion 64k+1 (bits 15-0)  |

## 5. Application Registers

There are eight application specific (I/O) registers and consists of the following the:

- CSR,
- number of samples per trigger (NCO),
- memory conversion pointer,
- clock rate,
- interrupt vector value
- Extended CSR.

There are also 16 ADC buffer registers.

## 5.1 Control & Status Register (CSR)

#### 5.2 Control

Write Address: Ohex

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ARM | EX  | ST  | XC  | ET  | EE  | FE  | HE  | 1M  | DA  | EII | MII | Х   | CC  | F   | HF  |

#### Status

Read Address: Ohex

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ARM | EX  | ST  | XC  | ET  | EE  | FE  | HE  | 1M  | DA  | EII | MII | MIS | CC  | F   | HF  |

**ARM** Arm the ADCs. Allow conversions either continuous or triggered.

- **EX** Enable trigger. If not set continuously sample at the clock rate. If set allows external trigger or software trigger
- ST Software trigger. Triggers a programmed number of samples. ST is cleared on completion.
- **XC** Enable the external clock. If 0 the internal clock is used for the sample rate. If set true the external clock is used for the sample clock without frequency division.
- **ET** When logic '0' disable hardware memory inhibit input. When logic '1' enable hardware memory inhibit from IP **Strobe**\* line (*on Hytec 800x IP carrier card, this signal is driven from the front panel INHIBIT lemo*).
- **EE** Enables interrupt at end of sampling sequence.
- **FE** Enables interrupt when the upper conversion memory has been filled. (Memory Full).
- **HE** Enables interrupt when the lower conversion memory has been filled. (Memory Half Full).
- **1M** Enables 1Mb memory (64K samples/channel) when logic 1 and 2Mb (128K samples/channel) when logic 0.
- **DA** Set to 1 allows the unit to disarm on completion of memory acquisition
- **EII** This enables an interrupt to be generated when ever the memory inhibit bit (MIS) is set.
- MII (Write) When set to logic '1' hardware memory inhibit interrupt is cleared but not disabled. (Read) Shows that an interrupt has been generated from hardware memory inhibit.
- **MIS** (**Read Only**) this bit indicates that the hardware memory inhibited on the IP **Strobe\*** line is asserted when at logic '1' (*driven from the front panel INHIBIT lemo on Hytec 800x IP carriers*).
- **CC** Conversions complete. Status bit set when the number of programmed samples has been completed. Generates IRQ0\* if set and EE is set to a logic 1.
- **F** Full status. Set when the upper conversion memory has been filled. Generates IRQ0\* if set and FE is set to a logic 1. To clear this flag write a '0' to this bit.
- **HF** Half full status. Set when the lower conversion memory has been filled. Generates IRQ0\* if set and HE is set to a logic 1. To clear this flag write a '0' to this bit.

#### 5.3 Conversion Pointer LSW

Read/write Address: 2hex

The current conversion address is given by the conversion address offset by the ADC number. This register **can not be** written too when the unit is ARMed.

When in 24bit mode the address counter is incremented by 2.

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| C15 | C14 | C13 | C12 | C11 | C10 | C9  | C8  | C7  | C6  | C5  | C4  | C3  | C2  | C1  | C0  |

#### 5.4 Number of conversions LSW

Read/write Address: 4hex

The number of conversions register allows the number of samples per trigger to be programmed. If a number of triggers occur and the memory buffer size per channel is exceeded the conversions will wrap around from the upper memory to the base of the lower memory.

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| N15 | N14 | N13 | N12 | N11 | N10 | N9  | N8  | N7  | N6  | N5  | N4  | N3  | N2  | N1  | N0  |

#### 5.5 ADC Sample Rate

Read/write Address: 6hex

The first five bits in the sample rate register are used to enables codes 0 - 16 to enable frequencies of 1 Hz to 100kHz in multiples of 1,2,5 or 10. (E.g. 0=1Hz, 1=2Hz, 2=5Hz, 3=10Hz and so on to 15=100KHz) Each clock pulse will initiate simultaneous ADC conversions and store them in memory.

# If the external sample clock exceeds 50KHz the unit must be put in to High Speed Mode by selecting the Internal 100KHz sample rate.

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03        | D02 | D01        | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|------------|-----|
| X15 | X14 | X13 | X12 | X11 | X10 | X9  | X8  | X7  | X6  | X5  | X4  | <b>S</b> 3 | S2  | <b>S</b> 1 | S0  |

#### 5.6 Interrupt Vector

Read/write Address: 8hex The vector register is a 16 bit register which stores the interrupt vector value.

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| V15 | V14 | V13 | V12 | V11 | V10 | V9  | V8  | V7  | V6  | V5  | V4  | V3  | V2  | V1  | V0  |

#### 5.7 Extended Control & Status Register (CSR Ext)

Read/write Address: Ahex

| D15  | D14 | D13 | D12    | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|------|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| EN16 | CAL |     | Endian |     | Е   | EFW | IFW | HS  | R   |     |     | ISE | IS  | SMI | TEN |

- **TEN** This shows the trigger status of the unit (Read only).
- SMI This sets Software Memory Inhibit when at logic '1'. This does not generate an interrupt or set the MIS in the CSR.
- **IS** ADC Register update status. Set high when the ADC Registers have been updated. Generates IRQ0\* if set and ISE is set to a logic 1. To clear IS write '1' this also clears the IRQ.
- **ISE** Enables interrupt when ADC Registers have been updated as indicated by **IS**.
- **R** Set ADC range set to 0 = +/-10V and range set to 1 = +/-5V.
- **HS** Indicates ADC in High Speed Mode when running at greater then 50KHz sample rate when using internal clock. When using external sample clock need to set this by setting the internal clock speed to 100kHz in the ADC Sample rate register.
- **IFW Do not set this bit as setup and calibration data maybe lost.** This bit enables the FPGA flash write from buffer command
- **EFW Do not set this bit as setup and calibration data maybe lost.** This bit enables the External flash write by writing to IP mem i.e. switches off RAM
- **E Do not set this bit as setup and calibration data maybe lost.** This bit enables the External flash chip or sector erase when do a IP write to mem. If IP data is 0x10 then chip erase (64s time taken) if IP data is 0x30 then sector erase where the sector address is given in the IP memory address lines. If chip erase then IP mem address = 0x555 and data 0x10.
- **Endian** '0'=Little Endian '1'= Big and Little for ADC data in memory and data ADC registers in 24 bit acquisition mode only.
- **CAL** If set to '1' unit does not use on board flash calibration *for register updates only*. If EX=1 then this has no effect. Used for production test.
- **EN16** Enable 16 bit mode when set to logic 1.

#### 5.8 Conversion Pointer MSW

Read/write Address: Chex

This is the top two bits of the current conversion address is given by the conversion address offset by the ADC number. This register **can be** written too when the unit is ARMed.

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | C17 | C16 |

#### 5.9 Number of conversions MSW

Read/write Address: Ehex

The number of conversions register allows the number of samples per trigger to be programmed. If a number of triggers occur and the memory buffer size per channel is exceeded the conversions will wrap around from the upper memory to the base of the lower memory.

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | N17 | N16 |

#### 5.10 ADC Registers

Read only Address: 10hex – 28hex

The sixteen ADC buffer registers store the last sample conversions and may be read at any time. Data format 000F00h = -10v, 800000h = 0V and FFF100h = +10V. Data format 000F00h = -5v, 800000h = 0V and FFF100h = +5V.

**16 bit mode** (as 8401) this uses address 10hex to 18hex (Word 8hex – Fhex) for channels 1 to 8. The eight ADC buffer registers store the last sample conversions and may be read at any time. Data format 000F00h = -10v, 800000h = 0V and FFF100h = +10V. Data format 000F00h = -5v, 800000h = 0V and FFF100h = +5V.

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| C23 | C22 | C21 | C20 | C19 | C18 | C17 | C16 | C15 | C14 | C13 | C12 | C11 | C10 | C9  | C8  |

In 16 bit acquisition mode the 'Endian' bit in the CSR Ext has no effect.

**24 bit mode** this uses address 10hex to 28hex (Word 8hex – 17hex)

The sixteen ADC buffer registers store the last sample conversions and may be read at any time. Data format 000F00h = -10v, 800000h = 0V and FFF100h = +10V. Data format 000F00h = -5v, 800000h = 0V and FFF100h = +5V.

#### **Little endian** (Endian bit in CSR Ext='0')

| i.e. channel | 1 address of | low word is 10hex | (Word 8hex) |
|--------------|--------------|-------------------|-------------|
|--------------|--------------|-------------------|-------------|

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| C15 | C14 | C13 | C12 | C11 | C10 | C9  | C8  | C7  | C6  | C5  | C4  | C3  | C2  | C1  | C0  |

channel 1 address of high word is 12hex (Word 9hex)

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | C23 | C22 | C21 | C20 | C19 | C18 | C17 | C16 |

**Big endian** (Endian bit in CSR Ext='1')

i.e. channel 1 address of low word is 10hex (Word 8hex)

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | C23 | C22 | C21 | C20 | C19 | C18 | C17 | C16 |

#### channel 1 address of high word is 12hex (Word 9hex)

| D15 | D14 | D13 | D12 | D11 | D10 | D09 | D08 | D07 | D06 | D05 | D04 | D03 | D02 | D01 | D00 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| C15 | C14 | C13 | C12 | C11 | C10 | C9  | C8  | C7  | C6  | C5  | C4  | C3  | C2  | C1  | C0  |

## 6. ADC OPERATION

#### 6.1 Memory Update Inhibit and Interrupt

The updating of the conversion memory can be stopped by controlling the external IP **Strobe\*** line (*on the Newwood 8002, 8004 or 8802 IP carrier card, this signal is driven from the front panel INHIBIT lemo*).

When the STROBE line is taken low and the enable hardware memory inhibit bit (ET) is set in CSR the updating of the conversion memory is stopped. This is indicated by the MIS bit in the CSR going high. On memory update inhibit an interrupt can be generated if the Enable Memory Inhibit Interrupt enable bit (EII) is set in the CSR. The Memory Inhibit Interrupt (MII) bit of the CSR flags an interrupt. This is cleared by either clearing the EII in the CSR or by writing a '1' to MII bit in the CSR which clears the Memory Inhibit Interrupt without the need to clear the EII in the CSR.

The IP Strobe\* line needs to be taken high then low after interrupt cleared to generate a new interrupt.

#### 6.2 Set Number of Conversions

The 'EX' bit in the CSR must be set, if not then the NOC is ignored and the CC flag will not be set. The number of conversions register (NOC) at address 2hex allows the number of samples per trigger to be programmed. The maximum number of conversions is 32K of samples 1MB and 64K of samples for 2MB for each channel before the Conversion Complete (CC) flag is set in the CSR. An interrupt is generated if the Enable Interrupt on Last Sample (EE) bit is set in the CSR. To clear the interrupt write a '0' to the CC bit of the CSR.

If a number of triggers occur and the memory buffer size of 64K of conversions per channel is exceeded the conversions will wrap around from the upper memory to the base of the lower memory.

#### 6.3 Triggering

The triggering of the ADC8417 is only used when the number of conversions has been set in the Number of Conversions register and the Enable Trigger (EX) bit has been set in the CSR.

#### 6.3.1 Software Trigger

The unit can be triggered by a software trigger by writing a '1' to the Software Trigger (ST) bit of the CSR.

#### 6.3.2 Hardware Trigger

The external trigger is passed to the ADC8417 via designated pins see Appendices B, C and D.

#### 6.4 Memory Update

All ADC channels are updated simultaneously and the memory pointer incremented. Therefore the memory pointer indicates what memory location has been reached by all the ADCs by adding the channel number to the pointer value with the channel number as the most significant bit.

E.g:- Channel 1 = xxxx Channel 2 = 1xxxx Channel 3 = 2xxxx etc.

With 2Mb operation it is necessary to include the half full flag to see whether the pointer is addressing lower or upper memory space.

E.g:- Channel 1 = xxxx Channel 2 = 1xxxx Channel 3 = 2xxxx when HF=0 for lower memory Channel 1 = 8xxxx Channel 2 = 9xxxx Channel 3 = Axxxx when HF=1 for upper memory

## 7. ID PROM

The word addresses are as below:-

| Base+80 | ASCII 'VI'       | 5649h                                              |
|---------|------------------|----------------------------------------------------|
| Base+82 | ASCII 'TA'       | 5441h                                              |
| Base+84 | ASCII '4 '       | 3420h                                              |
| Base+86 | NW ID high byte  | 0080h                                              |
| Base+88 | NW ID low word   | 0300h                                              |
| Base+8A | Model number     | 8417h                                              |
| Base+8C | Revision         | 3302h This shows PCB Iss 3 FPGA at Version 302     |
| Base+8E | Reserved         | 0000h                                              |
| Base+90 | Driver ID        | 0000h                                              |
| Base+92 | Driver ID        | 0000h                                              |
| Base+94 | Flags            | 0006h This shows 8MHz and 32MHz operation          |
| Base+96 | No of bytes used | 001Ah                                              |
| Base+98 | Cal Type         | 0000h $0 =$ No software Calibration factors stored |
| Base+9A | Serial Number    | xxxxdec                                            |
| Base+9C | Not used         | 0000h                                              |
| Base+9E | WLO              | 0000h                                              |
|         |                  |                                                    |

## 8. SELECTION OF THE +/-12 VOLT POWER SUPPLY

The ADC 8417  $\pm$ -12 volt power supply can be derived either internally from the carrier card or from an external source via a transition card . The source is selected using jumpers J1, J2 and the GND AGND link where:

J1 External +12V connect 1 & 2, Internal +12V connect 2 & 3

J2 External -12V connect 1 & 2, Internal -12V connect 2 & 3

GND AGND Link IN for internal +/-12V OUT for external +/-12V (supplied from transition card DC DC converter this must be able to supply).

## **IMPORTANT NOTE**

The 8417 ADC should not be operated with only one of the 12Volt power rail connected as this may cause damage to the unit. This situation can be caused by incorrect setting of the jumpers J1 or J2 which set the source of the +/-12Volt supplies to the 8417 ADC card.

#### Power supply in balance will occur if:

- 1. one of the jumpers is set to select the 12Volt from an isolated power supply which is not fitted and the other being set for internal 12Volt supply.
- 2. one of the jumpers is not fitted.

## 9. EPICS Software Driver

EPICS and ASYN software drivers are in development for the ADC8417 8 channel 24 bit ADC Industry Pack.

For downloads go to: http://www.newwoodsolutions.co.uk/Default.aspx

## **APPENDIX A**

#### PCB JUMPERS

#### Issue 1 PCB

- J1 External +12V connect 1 & 2, Internal +12V connect 2 & 3
- J2 External -12V connect 1 & 2, Internal -12V connect 2 & 3
- J3, J4 and J5 Not used.
- J6 Selects +2.5V or +5V output to transition card
- J7 Selects -2.5V or -5V output to transition card

LNK1 Factory set IN links VME GND and AGND.

## **APPENDIX B**

## I/O Connector -PL2 (50 way) on 8417 ADC Board

| Pin | Signal      | Pin | Signal            |
|-----|-------------|-----|-------------------|
| 1   | Input 1 +ve | 26  |                   |
| 2   | Input 1 -ve | 27  |                   |
| 3   | Input 2 +ve | 28  |                   |
| 4   | Input 2 -ve | 29  |                   |
| 5   | Input 3 +ve | 30  |                   |
| 6   | Input 3 -ve | 31  |                   |
| 7   | Input 4 +ve | 32  |                   |
| 8   | Input 4 -ve | 33  | +2.5V or +5V (J6) |
| 9   | Input 5 +ve | 34  | -2.5V or -5V (J7) |
| 10  | Input 5 -ve | 35  | ExtTrig Pos       |
| 11  | Input 6 +ve | 36  | ExtTrig Neg       |
| 12  | Input 6 -ve | 37  | N.C.              |
| 13  | Input 7 +ve | 38  | N.C.              |
| 14  | Input 7 -ve | 39  | XClk              |
| 15  | Input 8 +ve | 40  | /XClk             |
| 16  | Input 8 -ve | 41  | +12VX Input       |
| 17  |             | 42  | AGND              |
| 18  |             | 43  | +12VX Input       |
| 19  |             | 44  | AGND              |
| 20  |             | 45  | -12VX Input       |
| 21  |             | 46  | AGND              |
| 22  |             | 47  | -12VX Input       |
| 23  |             | 48  | AGND              |
| 24  |             | 49  | N.C.              |
| 25  |             | 50  | AGND              |

## **APPENDIX C**

## Newwoods TRANSITION CARD CONNECTIONS FOR THE ADC8417

#### I/O Connector – 50 way on transition

| Pin | Signal           | Pin | Signal         |
|-----|------------------|-----|----------------|
| 1   | Chan 1 -         | 26  | Chan 1 +       |
| 2   | Chan 2 -         | 27  | Chan 2 +       |
| 3   | Chan 3 -         | 28  | Chan 3 +       |
| 4   | Chan 4 -         | 29  | Chan 4 +       |
| 5   | Chan 5 -         | 30  | Chan 5 +       |
| 6   | Chan 6 -         | 31  | Chan 6 +       |
| 7   | Chan 7 -         | 32  | Chan 7 +       |
| 8   | Chan 8 -         | 33  | Chan 8 +       |
| 9   |                  | 34  |                |
| 10  |                  | 35  |                |
| 11  |                  | 36  |                |
| 12  |                  | 37  |                |
| 13  |                  | 38  |                |
| 14  |                  | 39  |                |
| 15  |                  | 40  |                |
| 16  |                  | 41  |                |
| 17  | -2.5 or -5V (J7) | 42  | 2.5 or 5V (J6) |
| 18  | ExtTrig Neg      | 43  | ExtTrig Pos    |
| 19  |                  | 44  |                |
| 20  | ExtCLK Neg       | 45  | ExtCLK Pos     |
| 21  | AGND             | 46  | +12V *         |
| 22  | AGND             | 47  | +12V *         |
| 23  | AGND             | 48  | -12V *         |
| 24  | AGND             | 49  | -12V *         |
| 25  | AGND             | 50  |                |

\* Supplied when DC/DC converters to be fitted

#### Card 8201 (32 differential Signals) and 8211 (64 differential Signals)

Filtered inputs (check correct filter values) for 32/64 differential analogue signals plus external clock and trigger inputs. It has the option to fit on-board DC-DC converter for plant isolation.

This is the preferred card to use as it ties the inputs of the 8417 to AGND via 1Mohm resistors. It also has a low pass filter which can be switched in by jumpers (denoted by affixed label) on the card. The filter value should be determined before delivery.



8201 and 8211 signal conditioning card



#### Card 8308 and 8307

The 8308 allows for plug in signal card as used by the IOC to be plugged in to a single-width VME64X Transition Board.

The 8308 has four sites equating to IP positions A, B, C and D.

The 8307 has straight-through connections for 8002/4 carrier board sites A and B. Signal conditioning inline with connections to sites C and D by means of plug-in signal conditioning board (SCBs). There are two types of plug-in card that can be used:-

- 9304 straight through card.
   NOTE This card should be used with caution as the fully differential inputs of the 8417 may float if not correctly tied to AGND.
- 9202 signal conditioning card. This is the preferred card to use as it ties the inputs of the 8417 to AGND via 1Mohm resistors. It also has a low pass filter which can be switched in by jumpers (denoted by affixed label) on the card. The filter value should be determined before delivery.



9202 signal conditioning card

#### The Hytec/Newwood 8304 Straight-through transition card

Straight-through connections for 8002/4 carrier board sites A, B, C and D.

**NOTE** This card should be used with caution as the fully differential inputs of the 8417 may float if not correctly tied to AGND.

### APPENDIX D

# VME64X PIN ASSIGNMENT ON HYTEC/NEWWOOD 8002/8802/8004 IP CARRIER BOARDS FOR ADC8417

#### P0 pin assignment

| ROW A  | SIG         | ROW B  | SIG         | ROW C  | SIG         | ROW D  | SIG         | ROW E  | SIG         | ROW F  | SIG |
|--------|-------------|--------|-------------|--------|-------------|--------|-------------|--------|-------------|--------|-----|
| P0.A01 | D Chan 1+   | P0.B01 | D Chan 1-   | P0.C01 | D Chan 2+   | P0.DO1 | D Chan 2 -  | P0.E01 | D Chan 3+   | P0.F01 | GND |
| P0.A02 | D Chan 3 -  | P0.B02 | D Chan 4+   | P0.C02 | D Chan 4 -  | P0.D02 | D Chan 5+   | P0.E02 | D Chan 5 -  | P0.F02 | GND |
| P0.A03 | D Chan 6+   | P0.B03 | D Chan 6 -  | P0.C03 | D Chan 7+   | P0.D03 | D Chan 7 -  | P0.E03 | D Chan 8+   | P0.F03 | GND |
| P0.A04 | D Chan 8 -  | P0.B04 | D Chan 9+   | P0.C04 | D Chan 9 -  | P0.D04 | D Chan 10 + | P0.E04 | D Chan 10 - | P0.F04 | GND |
| P0.A05 | D Chan 11+  | P0.B05 | D Chan 11 - | P0.C05 | D Chan 12 + | P0.D05 | D Chan 12 - | P0.E05 | D Chan 13 + | P0.F05 | GND |
| P0.A06 | D Chan 13 - | P0.B06 | D Chan 14 + | P0.C06 | D Chan 14 - | P0.D06 | D Chan 15 + | P0.E06 | D Chan 15 - | P0.F06 | GND |
| P0.A07 | D Chan 16+  | P0.B07 | D Chan 16 - | P0.C07 | D+2V5 ROP   | P0.D07 | D-2V5 ROP   | P0.E07 | D XTrigger  | P0.F07 | GND |
| P0.A08 | D/XTrigger  | P0.B08 | N/C         | P0.C08 | N/C         | P0.D08 | D XCLK      | P0.E08 | D /XCLK     | P0.F08 | GND |
| P0.A09 | D +12V      | P0.B09 | D AGND      | P0.C09 | D +12V      | P0.D09 | D AGND      | P0.E09 | D -12V      | P0.F09 | GND |
| P0.A10 | D AGND      | P0.B10 | D -12V      | P0.C10 | D AGND      | P0.D10 | N/C         | P0.E10 | D AGND      | P0.F10 | GND |
| P0.A11 | C Chan 1+   | P0 B11 | C Chan 1 -  | P0.C11 | C Chan 2+   | P0.D11 | C Chan 2 -  | P0 E11 | C Chan 3+   | P0.F11 | GND |
| P0.A12 | C Chan 3 -  | P0.B12 | C Chan 4+   | P0.C12 | C Chan 4 -  | P0.D12 | C Chan 5+   | P0.E12 | C Chan 5 -  | P0.F12 | GND |
| P0.A13 | C Chan 6+   | P0.B13 | C Chan 6-   | P0.C13 | C Chan 7+   | P0.D13 | C Chan 7 -  | P0.E13 | C Chan 8+   | P0.F13 | GND |
| P0.A14 | C Chan 8-   | P0.B14 | C Chan 9+   | P0.C14 | C Chan 9-   | P0.D14 | C Chan 10+  | P0.E14 | C Chan 11+  | P0.F14 | GND |
| P0.A15 | C Chan 11+  | P0.B15 | C Chan 11-  | P0.C15 | C Chan 12+  | P0.D15 | C Chan 12-  | P0.E15 | C Chan 13+  | P0.F15 | GND |
| P0.A16 | C Chan 13-  | P0.B16 | C Chan 14+  | P0.C16 | C Chan 14-  | P0.D16 | C Chan 15+  | P0.E16 | C Chan 15-  | P0.F16 | GND |
| P0.A17 | C Chan 16+  | P0.B17 | C Chan 16-  | P0.C17 | C +2V5 ROP  | P0.D17 | C -2V5 ROP  | P0.E17 | C XTrigger  | P0.F17 | GND |
| P0.A18 | C/XTrigger  | P0.B18 | N/C         | P0.C18 | N/C         | P0.D18 | C XCLK      | P0.E18 | C /XCLK     | P0.F18 | GND |
| P0.A19 | C +12V      | P0.B19 | C AGND      | P0.C19 | C +12V      | P0.D19 | C AGND      | P0.E19 | C -12V      | P0.F19 | GND |

#### P1 Pin Assignment

| P1 ROW A | SIGNAL  | P1 ROW B | SIGNAL  | P1 ROW C | SIGNAL | P1 ROW D | SIGNAL | P1 ROW Z | SIGNAL |
|----------|---------|----------|---------|----------|--------|----------|--------|----------|--------|
| P1.A01   | D00     | P1.B01   | N/C     | P1.C01   | D08    | P1.D01   | N/C    | P1.Z01   | N/C    |
| P1.A02   | D01     | P1.B02   | N/C     | P1.C02   | D09    | P1.D02   | N/C    | P1.Z02   | GND    |
| P1.A03   | D02     | P1.B03   | N/C     | P1.C03   | D10    | P1.D03   | N/C    | P1.Z03   | N/C    |
| P1.A04   | D03     | P1.B04   | BG0IN*  | P1.C04   | D11    | P1.D04   | N/C    | P1.Z04   | GND    |
| P1.A05   | D04     | P1.B05   | BG0OUT* | P1.C05   | D12    | P1.D05   | N/C    | P1.Z05   | N/C    |
| P1.A06   | D05     | P1.B06   | BG1IN*  | P1.C06   | D13    | P1.D06   | N/C    | P1.Z06   | GND    |
| P1.A07   | D06     | P1.B07   | BG1OUT* | P1.C07   | D14    | P1.D07   | N/C    | P1.Z07   | N/C    |
| P1.A08   | D07     | P1.B08   | BG2IN*  | P1.C08   | D15    | P1.D08   | N/C    | P1.Z08   | GND    |
| P1.A09   | GND     | P1.B09   | BG2OUT* | P1.C09   | GND    | P1.D09   | N/C    | P1.Z09   | N/C    |
| P1.A10   | N/C     | P1.B10   | BG3IN*  | P1.C10   | N/C    | P1.D10   | N/C    | P1.Z10   | GND    |
| P1.A11   | GND     | P1.B11   | BG3OUT* | P1.C11   | BERR*  | P1.D11   | N/C    | P1.Z11   | N/C    |
| P1.A12   | DS1*    | P1.B12   | N/C     | P1.C12   | RESET  | P1.D12   | +3.3V  | P1.Z12   | GND    |
| P1.A13   | DS0*    | P1.B13   | N/C     | P1.C13   | LWORD* | P1.D13   | N/C    | P1.Z13   | N/C    |
| P1.A14   | WRITE   | P1.B14   | N/C     | P1.C14   | AM5    | P1.D14   | +3.3V  | P1.Z14   | GND    |
| P1.A15   | GND     | P1.B15   | N/C     | P1.C15   | A23    | P1.D15   | N/C    | P1.Z15   | N/C    |
| P1.A16   | DTACK*  | P1.B16   | AM0     | P1.C16   | A22    | P1.D16   | +3.3V  | P1.Z16   | GND    |
| P1.A17   | GND     | P1.B17   | AM1     | P1.C17   | A21    | P1.D17   | N/C    | P1.Z17   | N/C    |
| P1.A18   | AS      | P1.B18   | AM2     | P1.C18   | A20    | P1.D18   | +3.3V  | P1.Z18   | GND    |
| P1.A19   | GND     | P1.B19   | AM3     | P1.C19   | A19    | P1.D19   | N/C    | P1.Z19   | N/C    |
| P1.A20   | IACK    | P1.B20   | GND     | P1.C20   | A18    | P1.D20   | +3.3V  | P1.Z20   | GND    |
| P1.A21   | IACKIN* | P1.B21   | N/C     | P1.C21   | A17    | P1.D21   | N/C    | P1.Z21   | N/C    |
| P1.A22   | IACKOUT | P1.B22   | N/C     | P1.C22   | A16    | P1.D22   | +3.3V  | P1.Z22   | GND    |
| P1.A23   | AM4     | P1.B23   | GND     | P1.C23   | A15    | P1.D23   | N/C    | P1.Z23   | N/C    |
| P1.A24   | A07     | P1.B24   | IRQ7*   | P1.C24   | A14    | P1.D24   | +3.3V  | P1.Z24   | GND    |
| P1.A25   | A06     | P1.B25   | IRQ6*   | P1.C25   | A13    | P1.D25   | N/C    | P1.Z25   | N/C    |
| P1.A26   | A05     | P1.B26   | IRQ5*   | P1.C26   | A12    | P1.D26   | +3.3V  | P1.Z26   | GND    |
| P1.A27   | A04     | P1.B27   | IRQ4*   | P1.C27   | A11    | P1.D27   | N/C    | P1.Z27   | N/C    |
| P1.A28   | A03     | P1.B28   | IRQ3*   | P1.C28   | A10    | P1.D28   | +3.3V  | P1.Z28   | GND    |
| P1.A29   | A02     | P1.B29   | IRQ2*   | P1.C29   | A09    | P1.D29   | N/C    | P1.Z29   | N/C    |
| P1.A30   | A01     | P1.B30   | IRQ1*   | P1.C30   | A08    | P1.D30   | +3.3V  | P1.Z30   | GND    |
| P1.A31   | -12V    | P1.B31   | N/C     | P1.C31   | +12V   | P1.D31   | N/C    | P1.Z31   | N/C    |
| P1.A32   | +5V     | P1.B32   | +5V     | P1.C32   | +5V    | P1.D32   | +5V    | P1.Z32   | GND    |

| 1 2 pm assignment |             |        |     |        |             |        |             |        |             |  |
|-------------------|-------------|--------|-----|--------|-------------|--------|-------------|--------|-------------|--|
| ROWA              | SIG         | ROWB   | SIG | ROWC   | SIG         | ROWD   | SIG         | ROWZ   | SIG         |  |
| P2.A01            | B +12V      | P2.B01 | +5V | P2.C01 | B AGND      | P2.D01 | C -12V      | P2.Z01 | C AGND      |  |
| P2.A02            | B +12V      | P2.B02 | GND | P2.C02 | B AGND      | P2.D02 | C AGND      | P2.Z02 | GND         |  |
| P2.A03            | B -12V      | P2.B03 | N/C | P2.C03 | B AGND      | P2.D03 | C AGND      | P2.Z03 | N/C         |  |
| P2.A04            | B -12V      | P2.B04 | A24 | P2.C04 | B AGND      | P2.D04 | B Chan 1 +  | P2.Z04 | GND         |  |
| P2.A05            | N/C         | P2.B05 | A25 | P2.C05 | B AGND      | P2.D05 | B Chan 2 +  | P2.Z05 | B Chan 1 -  |  |
| P2.A06            | A Chan 1 +  | P2.B06 | A26 | P2.C06 | A Chan 1 -  | P2.D06 | B Chan 2 -  | P2.Z06 | GND         |  |
| P2.A07            | A Chan 2 +  | P2.B07 | A27 | P2.C07 | A Chan 2 -  | P2.D07 | B Chan 3 -  | P2.Z07 | B Chan 3 +  |  |
| P2.A08            | A Chan 3 +  | P2.B08 | A28 | P2.C08 | A Chan 3 -  | P2.D08 | B Chan 4 +  | P2.Z08 | GND         |  |
| P2.A09            | A Chan 4 +  | P2.B09 | A29 | P2.C09 | A Chan 4 -  | P2.D09 | B Chan 5 +  | P2.Z09 | B Chan 4 -  |  |
| P2.A10            | A Chan 5 +  | P2.B10 | A30 | P2.C10 | A Chan 5 -  | P2.D10 | B Chan 5 -  | P2.Z10 | GND         |  |
| P2.A11            | A Chan 6 +  | P2.B11 | A31 | P2.C11 | A Chan 6 -  | P2.D11 | B Chan 6 -  | P2.Z11 | B Chan 6 +  |  |
| P2.A12            | A Chan 7 +  | P2.B12 | GND | P2.C12 | A Chan 7 -  | P2.D12 | B Chan 7 +  | P2.Z12 | GND         |  |
| P2.A13            | A Chan 8 +  | P2.B13 | +5V | P2.C13 | A Chan 8 -  | P2.D13 | B Chan 8 +  | P2.Z13 | B Chan 7 -  |  |
| P2.A14            | A Chan 9 +  | P2.B14 | N/C | P2.C14 | A Chan 9 -  | P2.D14 | B Chan 8 -  | P2.Z14 | GND         |  |
| P2.A15            | A Chan 10 + | P2.B15 | N/C | P2.C15 | A Chan 10 - | P2.D15 | B Chan 9 -  | P2.Z15 | B Chan 9 +  |  |
| P2.A16            | A Chan 11 + | P2.B16 | N/C | P2.C16 | A Chan 11 - | P2.D16 | B Chan 10 + | P2.Z16 | GND         |  |
| P2.A17            | A Chan 12 + | P2.B17 | N/C | P2.C17 | A Chan 12 - | P2.D17 | B Chan 11 + | P2.Z17 | B Chan 10 - |  |
| P2.A18            | A Chan 13 + | P2.B18 | N/C | P2.C18 | A Chan 13 - | P2.D18 | B Chan 11 - | P2.Z18 | GND         |  |
| P2.A19            | A Chan 14 + | P2.B19 | N/C | P2.C19 | A Chan 14 - | P2.D19 | B Chan 12 - | P2.Z19 | B Chan 12+  |  |
| P2.A20            | A Chan 15 + | P2.B20 | N/C | P2.C20 | A Chan 15 - | P2.D20 | B Chan 13 + | P2.Z20 | GND         |  |
| P2.A21            | A Chan 16 + | P2.B21 | N/C | P2.C21 | A Chan 16 - | P2.D21 | B Chan 14 + | P2.Z21 | B Chan 13 - |  |
| P2.A22            | A +2V5 ROP  | P2.B22 | GND | P2.C22 | A -2V5 ROP  | P2.D22 | B Chan 14 - | P2.Z22 | GND         |  |
| P2.A23            | A X Trigger | P2.B23 | N/C | P2.C23 | A /XTrigger | P2.D23 | B Chan 15 - | P2.Z23 | B Chan 15+  |  |
| P2.A24            | N/C         | P2.B24 | N/C | P2.C24 | N/C         | P2.D24 | B Chan 16 + | P2.Z24 | GND         |  |
| P2.A25            | A XCLK      | P2.B25 | N/C | P2.C25 | A /XCLK     | P2.D25 | B +2V5 ROP  | P2.Z25 | B Chan 16 - |  |
| P2.A26            | A +12V      | P2.B26 | N/C | P2.C26 | A AGND      | P2.D26 | B-2V5 ROP   | P2.Z26 | GND         |  |
| P2.A27            | A +12V      | P2.B27 | N/C | P2.C27 | A AGND      | P2.D27 | B /XTrigger | P2.Z27 | B X Trigger |  |
| P2.A28            | A -12V      | P2.B28 | N/C | P2.C28 | A AGND      | P2.D28 | N/C         | P2.Z28 | GND         |  |
| P2.A29            | A -12V      | P2.B29 | N/C | P2.C29 | A AGND      | P2.D29 | B XCLK      | P2.Z29 | N/C         |  |
| P2.A30            | N/C         | P2.B30 | N/C | P2.C30 | A AGND      | P2.D30 | B /XCLK     | P2.Z30 | GND         |  |
| P2.A31            | Out+3.3V    | P2.B31 | GND | P2.C31 | Out+3.3V    | P2.D31 | GND         | P2.Z31 | Out +3.3V   |  |
| P2.A32            | Out +5V     | P2.B32 | +5V | P2.C32 | Out +5V     | P2.D32 | PC +5V      | P2.Z32 | GND         |  |

#### P2 pin assignment

Denotes pins with thickened tracks which can be used for power inputs